
A Voxel-Based, Forward Projection Algorithm for Rendering
Surface and Volumetric Data

John R. Wright

Julia C. L. Hsieh

Hughes Training, Inc.

Abstract

In this paper we present a voxel-based, forward projection algorithm with a pipeline

architecture for real-time applications. The multi-sensor capabilities (electro-optical, or

visual, and infrared) currently implemented in software have also been applied to non-real-

time imaging applications on workstations and minicomputers. Most suited for terrain

based applications, the system features haze, imbedded targets, moving objects, smooth

shading, and specular reflections.

Introduction

For the past several years our group at Hughes Aircraft Co., and later Hughes Training,

Inc., has been developing voxel-based algorithms for the rendering of surface and

volumetric data. This work was originally intended to be used in the construction of real-

time image generation systems for use in flight simulators and other demanding

applications. It has since grown to include non-real-time imaging applications on

workstations and minicomputers. Some of our earlier work was similar to methods

presented by Devich and Weinhaus[1] but has been enhanced to offer true perspective from

any viewing angle. The rendering algorithm provides several features applicable to flight

simulators, such as haze, repositionable target models, smooth shading, and specular

reflections, and is designed for implementation on a pipelined processor for real-time

applications. In addition, the terrain and object databases are implemented using voxels, or

volume elements, to provide greater resolution and scene content than is normally available

in polygon-based systems. The eyepoint is specifiable with six degrees of freedom as are

the positions of the objects. The rendered image is a perspective projection of the voxels to

the screen along rays from the database to the eyepoint. This puts it in the class of forward

projection algorithms with similarities to the cell by cell processing discussed by Upson

and Keeler [2]. Multiple objects are processed from back to front and range resolved with

a modified Z-buffer.

Definitions

The Hughes rendering algorithm uses two types of voxels, called case II and case III. A

case II voxel is used to represent terrain and surface data and is a rectangular solid

represented by four corner posts with a surface stretched between them. Each corner has

an accompanying height and color which are bilinearly interpolated across the surface. The

corner posts are shared between the four neighboring voxels so the surface is contiguous.

Normally, only the top of a case II voxel is visible. If the side is visible, it will be a

constant color. For vertical surfaces with some variety, case III voxels are used. A case

III voxel contains a height and a color, which represent a base, and a pointer to a vertical

stack of segments, called a pattern, which make up the vertical information resting on top

of the base. Each segment in the stack contains a height, or length, and a left and right

color. The left and right colors provide for interpolation in situations where color varies

across the volume of the voxel. It also contains surface normal information, for shading

and specularity, and some flags. The segments may be opaque, transparent, or translucent.

In fact, all voxels can have an opacity anywhere between transparent and opaque. All

references to color later in this paper include an accompanying opacity and specularity.

Repositionable objects, such as tanks, trucks, ships, aircraft, explosions, etc., are

composed of case III voxels. A terrain database may contain embedded case III objects,

such as buildings and trees, surrounded by case II voxels. Most of the case III objects we

have used were voxellized (scan-converted to voxels) from polygon models using

techniques developed by Kaufman[3,4,5], and Cohen and Kaufman[6].

A database is composed of several layers, each containing a particular type of information

such as elevation, color, flags, pattern numbers, etc. The layers are broken up into

rectangular regions which represent an area of the database at a given resolution. All the

layers within a region are correlated with each other through various orthorectification and

image mosaicking steps during database creation. Many of the steps involved are presented

by Whiteside[7]. Multiple resolution levels are generally available for each region

providing for lower resolution data over a wide area with high resolution inserts for

approaches and other low altitude operations. Each database also has a corresponding

pattern segment table containing the patterns for all case III voxels in all regions in the

database. Each database rests on a baseplane which is the (x,y) plane at an elevation (z)

value of zero.

A database can be visual, with an RGB layer, or infrared (IR) with an intensity layer.

During the creation process, an IR database begins as multi-spectral images. These multi-

spectral images are segmented into areas of similar characteristics and the material types of

the areas are determined. The thermal parameters, such as albedo, emissivity, and

conductivity, are then used, along with the sun position and surface normal, to determine

the thermal radiance for each voxel in the database. The radiance layer is then rendered the

same as an RGB database. The process for generating these IR databases is discussed by

Quarato, et al[8]. This method provides for correlated sensor databases. Similar databases

can be used for synthetic aperture, real beam, or millimeter wave RADAR or LASER

RADAR (LADAR) imaging. The algorithms for rendering would be somewhat different,

however. Brown, et al[9], discuss the use of IR simulation algorithms for voxel target

models.

The eyepoint, as well as the positions of moving objects, are specified with six degrees of

freedom: x, y, z, roll, pitch, and yaw. The x, y, and z values are specified relative to the

origin of the database (e.g. the southwest corner). Yaw is rotation about the z (vertical)

axis measured relative to the x axis of the database. Pitch is rotation about the y axis above

or below the horizon. Roll is rotation about the x axis which is the boresight. The

boresight is defined as a line passing through the eyepoint and the center of the screen.

Figure 1 illustrates these relationships.

z

x

y

eyepoint

boresight

yaw

screen

nadir

pitch

baseplane

to horizon

roll

Figure 1 - Six Degrees of Freedom

Overview

The rendering algorithm is divided into two separate pipelineable sections, the voxel pipe

and the pixel pipe. Each pipe consists of several modules which perform the appropriate

calculations. The voxel pipe accesses the database voxels along a straight line which is the

current column of pixels projected onto the baseplane of the database. This column of

voxels is mapped onto the pixel column which is then processed by the pixel pipe into a

column of pixels across the frame buffer. The projection of voxels to the screen, rather

than the projection of pixels to the database, is the hallmark of a forward projection

algorithm. Figure 2 illustrates the perspective projection of voxels to the screen.

Figure 2 - Perspective Projection and Resolution Selection

This figure is missing!!!

A column of voxels is generated by starting at the nadir, which is the point of the database

immediately below the eye, and stepping out along a straight line. The steps are determined

by projecting a pixel column to the baseplane and computing the angle between the line thus

generated and the axes of the database. The delta x and delta y are found using the sine and

cosine of the computed angle. This fixed pattern of accessing the database means that the

rendering time is relatively independent of scene complexity. Each step lands on a voxel

which may be either of the two types listed above. If the voxel is case II, the height and

color are bilinearly interpolated from the four corners to the step point within the voxel. If

the voxel is a case III voxel, the corresponding pattern is located and each segment in the

pattern becomes another voxel in the column. At this point, each voxel consists of a

height, color, and ground range from the eye. From the height of the voxel, the height of

the eye, and the ground range to the step point, the depression angle to the top of the voxel

is calculated. This is the angle above or below the horizon with the nadir being 90 degrees,

the zenith being -90 degrees, and the horizon being zero.

Knowing the depression angle to the voxel, as well as the depression angle to the top and

bottom of the screen for the current column, it is possible to calculate the fraction of the

column being covered by the voxel. If a case III voxel is being processed, the depression

angle of both the top and bottom of each pattern segment are used to calculate the coverage.

The column is divided into pixels with each pixel occupying a fixed angular portion of the

column. Therefore, a voxel is converted to pixels by computing which pixels, or portions

of pixels, are covered by the voxel through simple angular comparisons. The voxels are

accumulated into pixels in a front to back order.

Once the entire column of pixels has been generated it goes into the pixel pipe. The pixel

pipe takes each angular pixel and calculates a screen, or frame buffer, location for it. This

is done by using the depression angle of the pixel and the angle between the current column

and the column at the center of the screen and doing a polar to flat screen coordinate

transformation. At the same time, it performs the roll calculation, rotating the pixels to their

final (x,y) position. The pixel pipe then performs a Z-buffer range resolution function by

discarding pixels behind those already on the screen and then integrates the visible pixels

into neighboring positions in the frame buffer.

It is important to note that the voxel columns are projected as planes passing through the

eyepoint and the nadir such that they are always perpendicular to the baseplane of the

database being rendered. This means that all segments of a vertical pattern will be projected

into the same column. However, a column of pixels will not necessarily be parallel to any

edge of the screen or even to any other column. In fact, the columns form a radial spoke

pattern with the nadir or zenith at the center, as shown in Figure 3. The radial scan

technique is similar to that presented by Patz, et al[10].

eyepoint

scanning plane

scan direction

nadir

z

x

y

vanishing point

viewing screen

column

pixel

Figure 3 - Radial Scan

Details of the Algorithm

Figure 4 contains a block diagram of the modular structure of the rendering algorithm

implementation.

coordinate
generator

database
memory

pattern
processor

voxel
processor

pixel
buffer

pixel
mapper

cloud
buffer

frame
buffer

init ialize
system

initialize
subframe column

parameter
generator

displayrender
frame

Voxel Pipeline Pixel Pipeline

Figure 4 - Modular Composition of Rendering Algorithm

The modules included in the diagram will be discussed in more detail individually.

The Initialize System module initializes the system, loads the database, and initiates the

frame rendering. The database load function, deserves a bit of explanation. It loads the

various layers of the database, as well as the vertical pattern information. The basic

function is to load a database region and to update the valid region tables for the Coordinate

Generator module. Note that the regions must be rectangular but may be of any size.

Multiple regions, which may partially or fully overlap, may be loaded for a given resolution

level. The valid region tables contain the information about what regions, at what

resolution levels, are valid for which areas of the database.

The Render Frame module performs some frame initialization calculations, reads in the eye

and object positions for the frame, and then renders the subframes by initiating the

appropriate modules. In particular, the frame initialization includes sorting the moving

objects based on range. The subframes are rendered terrain first (if any), and then any

moving objects from far to near. This ordering is important because the pixels must enter

the frame buffer in a far to near order for proper accumulation and attenuation if

translucencies are involved. The Initialize Subframe module then performs the subframe

initialization tasks such as determining object visibility, scan limits, trim angles, and pixel

subtend angle, and transforming the eye position in world coordinates to the eye position in

subframe coordinates. The scan limits calculation includes checking to see if the subframe

should be clipped on the frame boundary or the object's boundary or both. In order to

insure that all pixels on the screen are generated, yet minimize the number of columns and

pixels per column, it is desirable to trim the columns at the edges of the screen, or at the

limits of the object, prior to generating the pixels. To do this, it is necessary to use the

screen parameters (width, height, field of view, pitch, roll, etc.) to generate the appropriate

column parameters.

The rendering of a single frame is broken down into the rendering of multiple subframes.

Each subframe consists of rendering a single database, meaning the terrain, or a single

object. The rendering of a subframe is done under the control of the Column Parameter

Generator (CPG) module. The CPG generates various parameters for the processing of

each of the columns needed to complete a subframe within the scan limits previously

determined. These are the sine and cosine of the ground column angle (the angle between

the projection of the column to the baseplane and the projection of the boresight column),

the angle to the bottom and top of the screen (or trim angle) for that column, the delta x and

delta y and the diagonal step size. Given the ground column angle, the CPG computes the

pitch angle to the top and bottom of the screen for the particular column. Because of the

radial scan and roll, the column may actually intersect the sides of the screen instead of top

and bottom. The CPG determines which sides of the screen the column intersects and then

applies the formula:

P = tan-1
sin P * cos (-col) * cos R + sin (-col) * sin R - cos P * cos (-col) * tan (FOV/2)

cos P * cos R + sin P * tan (FOV/2)

where P = pitch, R = roll, FOV = field of view measured horizontally across the width of

the screen, and col = ground column angle. This formula gives the pitch of the intersection

of the column and the top of the screen. Similar calculations, which also involve the aspect

ratio of the screen, compute the pitch for other edges. If the nadir is on the screen, then the

bottom angle is set to +90 degrees. Similarly, if the upper nadir, or zenith, is on the

screen, then the top angle is set to -90 degrees.

The Voxel Pipe

The Coordinate Generator module uses an initial x and y starting position and a delta x and

y to generate a series of voxel addresses which step across the database. For each x and y

step, the Coordinate Generator checks a valid region table to find the best resolution data

available at that (x,y) position. The best resolution is the finest resolution data available

which is at least as coarse as the desired resolution level, determined by slant range. Once

it has determined the resolution level of the best data available, it locates the address of that

data within the database memory.

The Database Memory module accepts a column of voxel addresses and accesses its

memory to retrieve the color and elevation information for the four neighbor corners. If the

voxel is of type case II, the four corners are then bilinearly interpolated in color and

elevation and a final voxel is produced. If the voxel is III, the appropriate data for those

voxel types is also retrieved.

The Pattern Processor module handles the voxels which are case III. The case III voxels

cause the Pattern Processor module to access the pattern memory to retrieve the vertical

color and elevation information above the base voxel. Each piece of vertical information,

called a segment, becomes a separate voxel within the voxel arrays. To ensure the proper

accumulation of voxels into pixels, the Pattern Processor module will output the stack of

segments from the eye elevation up and then down. This ensures that all voxels will

contribute to pixels from the nearest to the farthest. Within the voxel/pixel column, the

voxels are processed from front to back. Certain flags must be set to ensure that the voxels

going up and those going down are processed appropriately. In addition, the Pattern

Processor performs smooth shading calculations for the case III voxels. Each case III

pattern segment has a horizontal and a vertical orientation value. Using the sun position,

the Pattern Processor computes the incident sun angle for each segment and combines the

sunlight color, the ambient light color, and the voxel color using the following formula:

Ifinal = Ivox * (Iamb + Isun * cos(incident_angle))

The formula is computed for each channel, once for IR or three times for RGB. This is a

standard formula as discussed by Foley and Van Dam[11].

The Voxel Processor accepts a stream of voxels which have been prepared by the Pattern

Processor and calculates the depression angle and slant range to each. The slant range and

depression angle are calculated from the ground range from the eye to the voxel (as

determined by the number of steps taken to get there), the height of the voxel above the

base plane, and the height of the eye above the base plane. Voxels are processed as

rectangular solids so they have the appropriate cross-section at any viewing angle.

The other major function of the Voxel Processor is the planning scan. When the pipeline

processor begins to process a column, it begins by doing a planning scan at a coarse

resolution to determine the correct hierarchies to access for each region. The Voxel

Processor computes the desired hierarchies during the planning scan. The correct hierarchy

is determined by requiring the system to choose voxels which are wider than the distance

between neighboring columns at that slant range. This causes the algorithm to select

coarser and coarser resolution data as it renders data further from the eyepoint. To find this

distance the following formula is used:

distance = sin(column_angle) * slant_range

Once this distance is known the appropriate size voxels can be selected. Figure 2 illustrates

the selection of appropriate sized voxels based on slant range. To avoid a large processing

overhead for the planning scan, the voxel data several levels of resolution coarser than

expected shall be used for the plan, if available. This method allows us to determine the

desired hierarchy for the voxels but does not allow us to locate hidden regions or determine

the number of steps to the first voxel visible on the screen.

The Pixel Buffer is one of the most sophisticated functions in the renderer. It accepts

voxels from the Voxel Processor module and produces pixels which are stored in the

column buffer. The column buffer is included within the Pixel Buffer module. The

incoming voxels have a slant range and depression angle which the Voxel Processor

calculated. The depression angle and the voxel's color and opacity are the primary values

used when generating pixels.

Voxels entering the Pixel Buffer are accompanied by a color, an opacity, a slant range, a

depression angle, and some flags. The Pixel Buffer compares the current depression angle

and the previous depression angle to the angular positions of the pixels to determine which

whole and partial pixels are covered by this voxel. The whole and partial pixels may be

handled two different ways. A bit map may be used to determine the portion of the pixel

which has been filled in. This conserves column buffer memory but does not handle

translucent pixels well. If a larger column buffer is not a problem, all pixels may be

subdivided into subpixels, each of which acts as a single, whole pixel in the column buffer.

Within each subpixel, the opaque and translucent sections are accumulated independently

with each portion coming in being attenuated by the already accumulated translucent

portion. The voxels are accumulated into the pixels in a front to back order. Once an

opaque voxel fills in a pixel, the pixel is marked as filled and no further contributions are

made to it. As pixels are filled in, the Pixel Buffer maintains the depression angle to the top

of the filled-in portion of the column. When that angle reaches the top of the screen the

column is finished. Then the pixel column is output to the pixel pipe, with each group of n

subpixels being accumulated (averaged) into a single output pixel.

In addition, the Pixel Buffer module performs specularity calculations for the pixels. Since

a given voxel, with a specific surface normal, may cover several pixels, the specularity

must be computed for each pixel individually. To perform the specularity calculation, the

Pixel Buffer uses the depression angle of the pixel and the column angle to compute the

vector from the voxel to the eyepoint. Then it uses that vector, along with the vector to the

sun, to compute the bisecting vector. Then the cosine of the angle between the bisecting

vector and the surface normal is used, along with the specularity, or shininess, of the

voxel, to compute the amount of sunlight being reflected toward the eye. The sunlight is

then combined with the smooth shaded intensity computed by the pattern processor to give

the final color which this voxel imparts to this particular pixel. Note that the opacity of the

specular reflection is dependent on the intensity of the specular highlight, not the opacity of

the voxel. Thus, transparent glass can have a bright reflective spot which masks anything

behind it.

The Pixel Pipe

Once the entire column of pixels is complete, it must pass down the pixel pipe. The first

module is the Pixel Mapper which maps each pixel from polar coordinates to flat screen

coordinates. The polar coordinates are represented by the ground column angle and the

pixel's depression angle. Using the pitch, roll, screen size, and field of view, the pixel is

mapped to an (x,y) position on the screen. The following formulas perform the mapping:

(height/2) * sin (col_angle)
x' =

tan (vfov/2) * [cos (pitch) * cos (col_angle) + tan (pix_angle) * sin (pitch)]

(height/2) * [cos (col_angle) * sin (pitch) - cos (pitch) * tan (pix_angle)]
y' =

tan (vfov/2) * [cos(pitch) * cos (col_angle) + tan (pix_angle) * sin (pitch)]

Then, the roll angle as applied about the center of rotation as follows:

x = x' * cos(roll) + y' * sin(roll) + x_center

y = -x' * sin(roll) + y' * cos(roll) + y_center

For improved performance, the same calculations can be performed with a folded

algorithm, as follows:

k1 - [k2 * tan (pix_angle)]
x = + x_center

k3 + [k4 * tan (pix_angle)]

k6 - [k7 * tan)pix_angle)]
y = + y_center

k3 + [k4 * tan (pix_angle)]

The kn values are subframe and column constants which are computed by the CPG for

each column.

The other function of the Pixel Mapper is to implement a haze algorithm. The haze appears

as a replacement of some of the pixel's intensity, in IR or RGB, with some haze intensity.

The amount of the pixel's intensity remaining is a function of slant range, pitch, and haze

density as follows:

Wo = eAeBZeye (1 - eRsBsin(pitch))/Bsin(pitch) for pitch ≠ 0

Wo = eRsAeBZeye for pitch = 0

where Rs is slant range from the eye to the pixel, Zeye is the elevation of the eyepoint,

pitch is the depression angle of the pixel from the horizon, and A and B are the haze density

and vertical distribution parameters, respectively. The haze and original pixel are combined

as follows:

Ifinal = Ipixel * Wo + Ihaze * (1.0 - Wo)

Note that for moving objects it is expected that the haze density will either not vary

significantly across them (if they are far away they should be small) or not be very dense (if

they are close the haze should be thin) so the pitch to the centroid of the object is used

instead of the pixel pitch. This is because the pixel pitch of objects is in terms of the

subframe coordinate space, not the terrain coordinate space where the haze exists.

The Frame Buffer module accepts a column of pixels and blasts them into the frame buffer

by accumulating the pixel into each of the four corner pixels around the incoming pixel's

(x,y) position. The Pixel Mapper module performs the mapping function to a higher

degree of accuracy than would be required to simply find the appropriate (x,y) position.

The extra resolution is used to determine the mapped pixel's position within the destination

pixel. The accumulation into the four neighboring corner pixels is weighted by the inverse

of the distance of the mapped pixel position from each corner. This technique is similar to

that presented by Westover[12] known as splatting. Each pixel accumulates the sum of the

weights of incoming pixels and the sum of the products of weight and intensity. The

weighted pixels are then range resolved in a standard Z-buffer implementation.

The frame buffer is the primary place where translucent pixels are combined, although it is

also done in the pixel buffer. The algorithm for attenuating colors visible behind a

translucent material can be different for different applications. The transport equation

defines how background information is attenuated by non-opaque voxels in front. In the

visual band (EO), translucent material is treated as an aerosol. Thus, the more opaque the

material, the more of it will be seen and the less of the background. If the material is

transparent, it provides no color to the pixel at all. In contrast, in the infrared (IR) band,

the transmissivity and the emissivity of a material may be relatively independent.

Therefore, a material could be totally transparent, and thus pass through all the background

contribution, and still emit in the same waveband, thus contributing additional intensity to

the pixel. The actual transport equations are:

Ip = Ifg * Ofg + Ibg * (1.0 - Ofg) for EO

Ip = Ifg + Ibg * (1.0 - Ofg) for IR

where Ip is the final pixel intensity, Ifg is the foreground material intensity, Ibg is the

background material intensity, Ofg is the opacity of the foreground material, and Obg is the

opacity of the background material. Note that the difference in the equations is that the

intensity contribution of each material is a function of its own opacity in the EO equation

but not in the IR equation.

The Display module normalizes the accumulated intensities in the frame buffer by dividing

by the accumulated weights to generate the final image. If the desired image is to be in the

visual band, three channels (red, green, and blue) are processed, while a single channel is

processed for infrared.

When rendering moving objects, each object is rendered as an individual subframe and the

pixel images are range-resolved and merged within the frame buffer. Each object is

represented as an individual database and rendered independently. The initialize subframe

module transforms the eyepoint in world coordinates and the object position in world

coordinates into an eyepoint in object coordinates, relative to the origin and axes of the

object database. Multiple objects may be rendered in each frame, and multiple copies of the

same object, in different positions, may also be rendered. The objects are range ordered

from far to near for rendering so the frame buffer can properly range resolve the pixels.

This is because the frame buffer does not store opacities, only range and color. Therefore,

if a pixel already has a contribution, it is assumed to be opaque. To ensure that this

condition matches the actual pixel ordering, the terrain is rendered first which fills the

screen with opaque pixels. Then each object is rendered and range-resolved with the

opaque terrain. The objects may have translucent portions which attenuate the background

via the transport equation but the attenuated pixel will still be opaque in the frame buffer.

Thus, the objects must be rendered from far to near to ensure the proper accumulation of

translucent colors. This back to front processing is similar to that presented by Drebin, et

al [13].

Anti-aliasing

Aliasing is a significant problem in real-time rendering applications. Problems which are

invisible in a single frame become glaring when a sequence of frames are displayed in real

time. These temporal aliasing problems include flickering, swimming, strobing, and other

anomalies. Of course, spatial aliasing problems, such as jaggies, need to be controlled as

well. The Hughes rendering algorithm employs several techniques for controlling both

spatial and temporal aliasing. For example, when generating a column of pixels, the pixels

are supersampled in the vertical direction and multiple pixels are combined into a single

pixel before passing into the pixel pipe. This causes the horizontal edges of objects to be

more accurately sampled to prevent popping from one pixel to the next as well as reducing

jaggies along the edge.

Another anti-aliasing technique used is called vertical feature anti-aliasing. If a column

intersects a vertical feature, such as a wall, at a shallow angle, adjacent voxel columns may

intersect the wall several voxels away. Then, as the eyepoint moves, the columns move

over to intersect voxels they missed before and the wall appears to shimmy and flicker.

This problem is reduced by combining the contributions of all voxels along the wall which

the column passes through. The algorithm uses the angle between the column and the

surface normal of the wall to determine how many steps it will take for the column to pass

from the front of the wall to the back. Then the opacity of the voxel is modified (reduced)

proportionately to how many steps remain. The last voxel remains opaque to make sure the

wall doesn't appear translucent. This technique is equivalent to supersampling the wall

voxels without the cost of extra pixels or columns. Figure 5 illustrates this technique.

0.20 0.25 0.33 0.50 1.0

Modified Opacities
All Voxels Sampled

Without Vertical
Feature Anti-aliasing

With Vertical
Feature Anti-aliasing

Unsampled
Opaque Voxels Top View

Figure 5 - Vertical Feature Anti-Aliasing

Of course, this technique assumes that the horizontal distance between two columns is less

than the width of a voxel. This is handled by the Coordinate Generator by selecting the

appropriate resolution voxels based on the slant range from the eye to the voxel. This

process also performs an additional anti-aliasing function in that no voxels can be missed

by adjacent columns. If voxels could be missed, flickering would occur as voxels were hit

and then missed as the eyepoint moved.

Another technique, discussed previously, is blasting, or splatting, in the frame buffer. As

a pixel enters the frame buffer, it contributes to four adjacent pixels proportionately to the

inverse of its distance from the corners. This prevents edges from popping from one pixel

to the next. In addition to blasting, the edges of moving objects, or subframes, are detected

and blended with the background pixels for smoother edges with fewer jaggies and less

popping.

Results

Here are some examples of images generated using the Hughes rendering algorithm.

Figure 6 is a rendered image of Yosemite valley showing Cathedral Rocks. The Yosemite

database is courtesy of GeoSpectra Corporation. The terrain resolution is about eight feet

per voxel. Figure 7 is a rendered image of Orange County, California, looking east from

the ocean. This database is also courtesy of GeoSpectra Corporation. The resolution is

approximately 30 meters per voxel with the original image source data being Landsat

photos. Figure 8 is a model of the San Onofre nuclear power plant inserted in a terrain

database of upstate New York. The power plant model has a resolution of about four feet

per voxel while the terrain resolution is about six inches per voxel. The model has been

scaled to one-fourth of its normal size, relative to the terrain. Note the smooth shading on

the domes. Figure 9 shows a T72 tank model sitting behind a case III tree model. The

tank was voxellized at three inch resolution from a polygon model. The tree was grown

fractally and then voxellized. Figure 10 shows a view of the Camp Pendleton Marine Base

in southern California showing haze. The algorithm has also been used to render smoke

cubes, missile plumes, and a rotating helicopter rotor blade.

The Hughes algorithm has been implemented in C, on a Sun SPARCStation 2 with 20

megabytes of memory and running X windows, and in special purpose hardware. The

hardware development effort, the REALSCENE™ program, implemented the algorithm

using a pipelined architecture virtually identical to figure 4. Each module was implemented

as a separate board in a custom backplane chassis. This hardware implementation has been

extensively simulated in FORTRAN. The C version is significantly faster than the

FORTRAN simulation because it does not try to emulate the low-level hardware details.

For a 384 by 384 pixel image, the following rendering times have been recorded:

Sun 272 seconds

Special purpose hardware 0.1 seconds

Note that for this comparison, no case III voxels were present in the database, nor were

any moving objects present. For general rendering purposes, the Sun has rendered images

in times ranging from less than one minute to up to 12 hours for the same size image. This

is dependent on the size of the database and how much page swapping had to be done

during rendering. Therefore, direct comparisons of rendering times are not very useful.

Suffice it to say that the special purpose hardware is about three orders of magnitude faster

than the Sun for this algorithm.

Conclusions

The Hughes rendering algorithm produces high quality images both for terrain and three-

dimensional models. It can be implemented in software or special-purpose hardware which

can deliver real-time performance. It provides several features considered important for

flight simulation applications but is also useful for non-real-time applications, such as

mission planning, imagery for hardware in the loop testing, and virtual reality. It can

render multiple sensor images of correlated databases with high resolution in the output

image. Its pipelineable, modular design suggests that it could perform well on a massively

parallel architecture.

Acknowledgements

The authors wish to thank Tom Ellis, Andy Rosman, and many other Hughes people who

contributed to the development of this algorithm and the varied implementations of it.

References

[1] Devich, R.N. and Weinhaus, F.M., " Rural Image Perspective Transformations",

Proceedings of SPIE, vol. 303, 1981, pp. 54-66.

[2] Upson, C. and Keeler, M., " V_BUFFER: Visible Volume Rendering", Proceedings of

SIGGRAPH, August, 1988, pp. 59-64.

[3] Kaufman, A. and Shimony, E., "3D Scan-Conversion Algorithms for Voxel-Based

Graphics", Proceedings of 1986 ACM Workshop on Interactive 3D Graphics, October,

1986, pp. 45-76.

[4] Kaufman, A., " Efficient Algorithms for 3D Scan-Conversion of Parametric Curves,

Surfaces, and Volumes", Proceedings of SIGGRAPH, vol. 21, no.4, July, 1987, pp.

171-179.

[5] Kaufman, A., "An Algorithm for 3D Scan-Conversion of Polygons", Proceedings

EUROGRAPHICS, August, 1987, pp. 197-208.

[6] Cohen, D. and Kaufman, A., "3D Scan-Conversion Algorithms for Linear and

Quadratic Objects", Volume Visualization, IEEE Computer Society Press, 1990, pp. 280-

301.

[7] Whiteside, A.E.," Preparing Data Bases For Perspective Scene Generation",

Proceedings of SPIE, vol. 1075 Digital Image Processing Applications (1989), pp. 230-

237

[8] Quarato, J., Brown, S., Chen, C., Nguyen, K., Malpass, J., Thursby, W., and

Hester, J.," Voxel Terrain Material Database and Synthetic IR Scene Generation",

Proceedings of Ground Target Modelling and Validation Conference, April, 1991, pp. 68-

88.

[9] Brown, S., Quarato, J., Chang, N., Wright, J., Malpass, J., Thursby, W., and

Hester, J.," Voxel Based IR Target Signature and Scene Generation", Proceedings of

Ground Target Modelling and Validation Conference, April, 1991, pp. 89-103.

[10] Patz, B., Gatt, P., Becker, G., Richie, S., LeBlanc, R., and Coulter, L., " Real Scan

Evolution", report prepared for Naval Training Equipment Center, 80-D-0014-2, February,

1982. This report is in the public domain and should be available through the University of

Central Florida or the Naval Training Equipment Center.

[11] Foley, J., and van Dam, A., Fundamentals of Interactive Computer Graphics,

Addison-Wesley, Reading, Mass., 1982.

[12] Westover, L., " Footprint Evaluation for Volume Rendering", Proceedings of

SIGGRAPH, August, 1990, pp. 367-376.

[13] Drebin, R., Carpenter, L., and Hanrahan, P., " Volume Rendering", Proceedings of

SIGGRAPH, August, 1988, pp. 65-74.

